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Part 1 - On the Existence of Uller's Waves 

ABSTRACT 

A reexamination of a general theory of wave propagation 

proposed by Uller is carried out. • The conclusion is reached that 

his hypothesis has not been placed on a firm physical foundation 

and cannot be considered valid in interpreting seismic data. 

*■*•*•*# * 

In recent years a general wave theory has been proposed 

by Karl Uller. Uller thought that the existing theory was inade¬ 

quate in its explanation of several physical phenomena, particularly 

with respect to elastic surface wave propagation. He proposed a 

general wave theory Which would be able to explain all observable 

types of waves. This theory was based on a single wave function, 

equation (l), employed in all subsequent work. In most of his 

studies a non-dispersive, non-viscous, isotropic, solid medium has 

been considered. 

His work has received attention from a number of seismolo¬ 

gists, and it has been thought by some that his method can lead to 

an interpretation of many of the presently unexplained features of 

seismograms. It is the purpose of this paper to show that the gen¬ 

eral wave function, ^ , (equation 1), is not the solution of a 

wave equation and that consequently his theory cannot be considered 

valid in interpreting data obtained from elastic wave propagation. 



Uller’s theory is based on the premise that the funadmental 

wave function is given by 

e -vft*.4**' (i) 

where N)| is the frequency of the source, is the swell or damping 

of the source, and Ap A^, , and are functions of the space 

coordinates. The symbol, V* , does not represent absorption in the 

elastic medium but relates directly to the source. The meaning of 

V2 is most easily seen from the following diagram^, which represents 

a wave sent out by the source. 

The source, operating at a constant frequency, builds up to a 

particular amplitude (swell of the source, \>*> 0) and then de¬ 

creases back to its undisturbed state (damping of the source, Va< 0). 

It is difficult to grasp the physical significance of such a source 

and the function,^ , related to that source. 

As Uller spends a great deal of time on plane wave motion, 

it is considered worthwhile to show explicitly that even in this case 

2 
his proposal is incorrect. Following his line of reasoning , the plane 

waves are obtained when A-^ and A2 are constants and when and 

1. Uller, K., Gerlands Beitrage zur Geophysik, 20, 131, (1928) 
2. Uller^ K., Gerlands Beitrage zur Geophysik, lj|, 402, (1927) 



3. 
are given by w,»r\ and respectively, where JV is the topographic 

radius and where w» and vj, are determined from the constants of the 
w ^ 

medium. Then according to Uller, there will be two travelling quan¬ 

tities and • These two travelling quantities 

V% Vz 
will be propagated with velocities ~ and ~ respectively; and they 

will have an angle, 9, between their directions of propagation where 

9 is the angle between va* and • 

It will now be shown that the interpretation given to vy 

in the above paragraph is incorrect. As stated above, for plane 

waves Uller’s ^ function is given by 

^ = e 

or 

where A^, A^, B and £ are constants. This function actually repre- 

V. 
sents a single propagation with velocity intermediate between-v 

and ^ — -£ , and it is propagated in the plane determined by vy% 

and • 

This can be followed through very simply both algebraically 

and geometrically for the case where and • 

There we may write 

(3) 

where C2S ^ , Ct5 ^ 
i 

, and • Let us now investigate 

the map of this function at a time, t’. 

will have zeros given by 

^1^*" c’j " ^2y\-v ^ ^ Vkere. >v*\,2|31 •' 



will decrease exponentially along the positive Y-direction and 

will oscillate along the X-direction. The positions where Vy has 

the value B are indicated by • in Figure 1: 

At a later instant tw the positions of the zeros will be given by 

and the marked positions have moved as indicated. It is easy to see 

now that the direction of propagation will be given by tan^c-j/^) 

from the X-axis in the XY plane and that the velocity of propagation 

is \fc%c? • The ab°ve relations can be easily generalized for ar¬ 

bitrary directions of and giving a velocity of propagation of 

^+ZcxC.zGQ*& * T*1® direction of propagation will be at an 

angle tan’"^(c2sinG/c^+ C2COS©)) measured from vi* in the plane deter¬ 

mined by Vj. and . 

Again using equation (3) let us make the transformation. 

X= x‘ CcaCjj 

= X 'cusa 
viVere 
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or 

X = 

V*+c f \(e?+ c/ 

cax 

Then we may write. 

* x g.a ^ i ( 

'£?*? g1(o,^^ ' oca, v, (v--——— 

Mtgi . x? v 

- ‘Se a*'fefv!»‘ e'Vz t~ N(cT^? ) 
to 

L 'C,4C1 ' Vc?^cf / C^4Cx 
3ju*V 

•hfcf 
As before is seen to represent a single propagation in the X*-direction 

with velocity \ C * 5 the terms in Yi give the amplitude modulation 

of the wave. 

Continuing to a more general discussion, it is noted that 

equation (1) does not satisfy the simple wave equation 

«« 

.X rrl 
<H*c' 7 

for the fundamental solution of this equation is of the form 

<S{ - 

A wave of the form 

cannot satisfy equation (5). 



We may go on to say that Uller*s wave will not satisfy any 

one dimensional wave equation. The reader may be referred to a 

recent article by Eckart-^ on this subject, where the general solution 

for one dimensional wave propagation is given by 

>V<«*V5r i4k (8a) 

where — 90 
oQ 

F(*V (8b) 

ScO 

The integration is. taken over real values of k and x, H(k) and D(k) 

are functions of k which depend upon the original differential equa¬ 

tion. It is to be especially noticed that the space coordinate enters 

only in the imaginary part of the exponent. There is a single propa¬ 

gating quantity. 

The only place where one meets a wave similar to that given 

by Uller is in surface wave propagation in an absorptive medium. There 

one obtains an expression of the form 

(9) 

However, in this case the exponential in time is due to the fact that 

the wave is being propagated in an absorptive medium; and the exponen- 
> 

tial in the y-coordinate is due to the fact that a free surface wave 

is being examined. They do not depend upon the original condition of 

the source. As his waves do depend upon an unusual source condition, 

the two waves cannot be compared. 

3. Eckart, C., Rev. Mod. Phys., 20, 400, (1948) 
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The faults of Uller’s method are indicated bv his own 
V 

application of the hypothesis to the differential equation of wave 

propagation in a gravitating medium. Upon substituting equation (1) 

into the differential equation, one finds that the arbitrary coeffi¬ 

cients A^ and A2, are no longer arbitrary. Such an answer cannot 

be considered valid. 

From the discussion in the preceding paragraphs, the 

interpretation of the wave function, Vjy} becomes clear. It represents 

a single propagation, not a double propagation. Of greater importance 

is the fact that Uller does not refer the function, Vy, to any 

differential wave equation. The conditions imposed by such differen¬ 

tial equations are in general not considered. Nevertheless, it is 

stated that all elementary types of wave phenomena can be represented 

by equation (1). 

It is interesting to continue on now to an examination of 

some of Uller’s comments on the present theory. In one of his first 

articles^, the following statement is found: "Der Begriff der Gruppen- 

geschwindigkeit aber, sofern es sich nicht um solche Interferenz 

handelt, ist eine mathematische Verlegenheitskonstruktion. Zu der 

wahren Erklarung konnte man nicht gelangen, weil man mit ungedampften 

und einfachen Sinuswellen arbeitete." The concept of group velocity 

is not an ambarrassment to applied mathematics. It is a necessary 

and most useful tool in dispersive wave propagation. 

In another section one finds the statement^: MEs wird erstens 

11 <» 
der Gultigkeitsbezirk des Snelliusschen Brechungsgesetzes als beschrankt 

erwiesen. . . . Ausserhalb des Snelliusschen Bezirkes gelten nicht die 

Satze von Fermat, Malus, Hamilton, Helmholtz, und Kirchoff." These 

4. Uller, K., Gerlands Beitrage zur Geophysik, 18, 404, (1927) 

5. ibid, 398 



various laws have formed the basis of our present ideas on wave 

propagation, and any hypothesis which is contrary to them should be 

questioned severely. 

Elsewhere the following statement is found^: MEs is schon 

lange bekannt, dass die Oberflachenwelle an einer Flussigkeit, als 

Ganzes, als Gruppe von Bergen und Talern betrachet, vielfach nicht 

it 

hinwegzulaufen scheint. Man hat diese Erscheinung erklart durch 

Annahme zweier gleichgerichter Wellen in Uberlagerung, die gleiche 

konstante Amplitude aber etwas verschiedene Wellenlange haben, geraass 

Dieser Erklarung obiger Erscheinung durch Interferenz und Dispersion 

stellen wir unsere allgemeine Wellenfonn (C) gegenuber, die mit ihren 

zwei wandernden Phasen eine Welle hoherer Ordnung darstellt." 

This explanation is not a true representa¬ 

tion of the mathematics of dispersion. Geometrical dispersion ap¬ 

pears as a natural consequence in the solution of many problems in¬ 

volving wave propagation, and the resulting expression usually has a 

simple physical interpretation. The problem of a source moving along 

7 
the surface of a liquid has been solved by Lamb' and presents the 

correct picture of this type of water wave propagation. 

6. ibid, 403 
7. Lamb, H., Hydrodynamics, 433-434, Dover, (1945) 
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The quotations that have been given are all from a single 

article. This was not the first article that Uller wrote on his wave 

theory, but it is the article in which he formally states and ex¬ 

plains his wave theory. Other articles extend his theory to spherical 

waves and to gravity effect. In other papers he considers surface 

waves on a free surface and along the interface between two elastic 

media. Reference to these articles is given in the bibliography. 
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Part 2 - On Electromagnetic Surface Waves 

ABSTRACT 

It is shown by consideration of the outgoing wave condition 

and the boundary condition at infinity that free electromagnetic sur¬ 

face waves cannot exist along the interface between two semi-infinite 

media. 

-x- ■* 

The problem of the propagation of electromagnetic waves 

from a dipole source situated on the interface between two semi¬ 

infinite media, air and earth, was first examined by Sommerfeld'*' and 

2 
later by Weyl . In the evaluation of the resultant integral. 

T\\ = 
(la) 

T.« 
XCXn) x 4X 

(ib) 

where TV, and are the z-components of the Hertzian vector in 

air and earth respectively and k-^ and k2 are the wave number in air 

and earth respectively, Sommerfeld obtained a term corresponding to a 

free surface wave, i.e., a wave which is propagated along the interface 

-'4 
between the two media, which decreases as H in the direction of propa¬ 

gation, and which decreases exponentially in both directions from the 

1. Sommerfeld, A., Ann. d. Physik 28, 665, (1909) 
2. Weyl, H., Ann. d. Physik 60, 4B1 (1919) 



interface. It is of the form 

L 
"TYj— z\ 2m 

K 
- >Tvv^ v e 

(2a) 

(2b) 

•where and y<= 

'{/5> ‘ 

Weyl, on the other hand, did not obtain a free surface wave/' Con¬ 

siderable attention has been given to this discrepancy without any 

clear cut answer having been obtained. 

It is the intent of this paper to resolve that difficulty 

and to show that the surface wave cannot exist. For this purpose an 

alternative derivation of the fundamental integral is given, following 

O I 

the method of Pekeris^* . Let us take cylindrical coordinates cen¬ 

tered at the dipole source as indicated in Figure 1. 

It is known that the radiation from a dipole source can be defined by 

the z-component of the Hertzian vector^Y > where must satisfy the 

* A good resume of the two methods of solution is found in Stratton's 
Electromagnetic Theory, McGraw-Hill, New York, 1941, pp. 573-587. 

3. Pekeris, C., G.S.A. Memoir 27, 44, (1948) 
4. Pekeris, C., J. Acoust. Soc. 18, 296 (1946) 



13. 

wave equations^ 

and 

and the boundary conditions at z : 0, 

To satisfy these conditions, solutions of the form 

iq= c'-t G.M 

(3a) 

(3b) 

(4a) 

(4b) 

(5a) 

(5b) 

are taken where A is an arbitrary variable of integration. The 

condition that there be a dipole source at the origin can now be most 

easily met by changing the second boundary condition to read 

= z\ (6) 

for when the expressions (5) are integrated with respect to X from 0 

■\V 

to oo, the discontinuity in * at becomes proportional, to 

I . This function vanishes for every value of U except 

o 
r\ = Q wliere it becomes infinite in such a manner that its integral 

over the plane z - 0 is finite. Substituting (5) into (3) we obtain? 



(7a) 

d r, 

<UX A 

A-j* A r* 

where 

(7b) 

and Ax=V^Xi 
The solutions of (7) satisfying the boundary conditions at oo will 

then be 

it a Tr F, = H,e (8a) 

F,= &*e 

and for the Hertzian vector. 

"V 3.M y H,0) 

e'A 1M t** > H,<V\ 

It is necessary at this point to make a few comments about 

the sign convention taken for the radicals and 

will be in general complex. In order to satisfy the boundary conditions 

at oo , as given by solutions (9), the sign of the real part of the 

radicals must always be taken positive. In order to have waves propa¬ 

gating away from the dipole source, the sign of the imaginary part of 
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the radicals must be taken positive. Both of the radicals will then 

in general be given by a positive real plus a positive imaginary. 

This condition is of the first importance when the investigation of 

the resulting integrals is considered. 

Substituting equations (9) into the boundary and source 

conditions at z = 0, (4a) and (6), we obtain for and H2 

W 
-fe, \[K$* 

(10a) 

2X*f (10b) 

The final expressions for and ^^will then be 

(lla) 

XX =2^ (ub) 

which are the same as those obtained by Sommerfeld, equations (1). 

The evaluation of the integrals (11) is most easily effected 

by transforming the path of integration to the complex plane and mak¬ 

ing the substitutions, 

where and are the two Hankel functions and have the proper¬ 

ties that vanishes at 00 in the first quadrant and vanishes 

at cd in the fourth quadrant. The paths of integration for and 



Ho\v^=-HoV^ 
the values of "ft* and will be given by the branch line integrals 

defined by and k2 plus the residues from any poles. The branch 

line integrals produce the expressions for the body waves in the two 

media and are identical in Sommerfeld^ and Weyl's solution. The in¬ 

terest in this paper is with the existence of any residues which would 

give rise to additional terms in the final solution and which in 

Somraerfeld^ solution produced the electromagnetic surface wave, Poles 

in the \ -plane will be located by solutions of the equation 

= Va * o (12) 

2 2 
The values for and are given by 

-*N 

* e*A 1 
where C and are the dielectric constants of air and earth 
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respectively, and Xl^ the permeabilities, and ^ and <3*^ the 

' 2 2 
conductivities. Thus, and will always be given by a positive 

real part plus a positive imaginary part. As stated previously, 

andy$^ will also have positive real and imaginary parts in order to 

satisfy the outgoing wave condition and the boundary condition at 

infinity. It is immediately apparent then that no value of X will 

satisfy equation (12); and consequently that there are no poles in the 

complex X-plane satisfying the physical conditions. There is no con¬ 

tribution corresponding to a surface wave. In the previous solution 

regard for the sign of the radicals had been lost by squaring equation 

(12) and solving for \ • 

Two papers have been written recently on this same subject, 

5 6 
one by Kahan and Eckart and the other by Epstein . It is felt that 

a few remarks are in order concerning their results. Kahan and Eckart's 

statement that the surface wave does not satisfy the outgoing wave 

condition is correct. However, they resolve the difficulty between 

Sommerfeld's and Weyl's solutions by stating that a saddle point, k , 

has been overlooked in the evaluation of one of the branch line inte¬ 

grals. The inclusion of this saddle point in the integration. 

5. Kahan, T., and Eckart, G., Phys. Rev. 76, 406 (1949) 
6. Epstein, P., Proc. Nat. Acad. Sci. 33«~T95 (1947) 



they say, will produce a term which will balance the surface wave 

18. 

expression obtained from the residue of the pole, k^. In going from 

path I (Sommerfeld) to path II (Kahan and Eckart), however, no singu¬ 

larities are passed; and consequently the exact value of the integral 

along path I must necessarily be the same as that along path II. It 

is possible that the approximate evaluations will differ by an amount 

equal to the surface wave expression, but this has not been demon¬ 

strated. 

Epstein, on the other hand, argues that the path of integra¬ 

tion in the \ -plane can be displaced out of the neighborhood of the 

supposed pole before the boundary conditions are introduced, thus 

eliminating the surface wave. One questions the validity of this 

step; for by transforming the path of integration before the intro¬ 

duction of the boundary conditions, the singularities that may occur 

due to the boundary conditions alone are eliminated. He then examines 

the conditions necessary to have a free surface wave propagated along 

the interface but fails to include the restrictions imposed on the 

signs of the radicals by the boundary condition at infinity and the 

outgoing wave condition. This problem is reexamined in the next* 

paragraph, where the existence of free electromagnetic surface waves 

is investigated for the simple case of plane waves. (The solution 

carries over easily to spherical waves.) 

Let us consider the z-component of the Hertzian function 

propagated along the xy interface in the x-direction (see Figure 4) 

Figure 4 
z 
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of the form 

TVv=^ 

A(x-^ 
e 

satisfying the wave equations 

TV, = 7% 

(13a) 

(13b) 

(14a) 

• m 
Z _ 

TVz-c* V TCZ (14b) 

Substituting equations (13) into equations (14), a second order dif¬ 

ferential equation in z is obtained, the solution of which is 

(15a) 

% 
= Ce 

(15b) 

where A : D : 0 in order to satisfy the boundary conditions at infinity. 

The boundary conditions at z : 0 are given by equations (3). Substi¬ 

tuting equations (15) into equations (13) and into the boundary condi¬ 

tions, the following equations for the amplitudes are obtained: 

(16a) 

(16b) 
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In order for the above equations to have a solution, the determinant 

of their coefficients must vanish. 

(17) 

Substituting 

gives 

-O (18 

which is identical with equatiQn (12) and as before will not have a 

solution satisfying the physical conditions of the problem. It is 

concluded that free electromagnetic surface waves cannot exist along 

the interface between two semi-infinite media. 
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Part 3 - Normal Mode Propagation in Three Layered Liquid Half-Space 

by Ray Theory 

ABSTRACT 

The fundamental integral for narmal mode propagation in a 

three liquid layered half-space is derived by multiple reflections 

and the physical significance of the characteristic equation is 

discussed. 

Pekeris^ has shown how the fundamental integral for two liquid layer 

p 
normal mode propagation can be derived by ray theory. Press and Ewing 

have discussed the physical significance of normal mode propagation in 

the two layered case. It is the purpose of this paper to derive the 

fundamental integral and discuss the physical significance of normal 

mode propagation in the three layered case. 

A spherical wave may be represented by the following inte¬ 

gral: 

where 
4 

\l nz+U-if 

-y4 

* 

/S-\fJlX' 
31 -W^3T\ 

circular frequency of the source 

C^veoloity of sound propagation 

t\- horizontal range 

a) 

1. pekeris, C., Geol. Soc. Amer., Mem. 27 (194&) 
2. Press, F. and Ewing, M., A. G. U. Trans., 29, 163-174 (1948) 
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depth of trie source 

and depth of the receiver. 

The integral merely represents the manner in which spherical source is 

built up from the summation of plane wave about a point. A represents 

the wave number as measured along the horizontal surface,and represents 

the wave number as measured along the vertical. The summation is taken 

over real and imaginary angles of incidence, in a reflected wave, 

see Figure 1, the integral becomes 

where \^is the plane wave reflection coefficient. The discussion of 

integrals of this type generalized to an impulsive point source has 

O I 

been carried out by Pekeris^ and by Arons and Yennie . 

Figure 1 

The fundamental integral for propagation in a layered medium 

can then be obtained by the summation of multiple reflections from a 

plane wave source and the generalization of tjiis summation to a point 

source. A plane wave source is considered to consist of two sets of 

outgoing waves - one upgoing and the other downgoing and both at the 

3. Pekeris, C., loc. cit. 
4. Arons, A., and Yennie, D., Jour. Acoust. 3oc. 22, 231-237 (1950). 
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same angle of incidence with the horizontal. The sum of the z- 

component of the multiple reflections is given by equation (3), see 

Figure 2, where 

reflection coefficient from medium 1 to medium 2 

reflection coefficient from medium 2 to medium 1 

reflection coefficient from medium 2 to medium 3 

and product of the refraction coefficient from 

medium 1 to medium 2 and the refraction coefficient from 

medium 2 to medium 1 

The expression in the first brackett is the sum of the direct ray and 

the first reflected ray. The first terra, in the expression 

rfVTTe 
% t* - _-»• 

+ K L TTe 

is the ray reflected from the 1-2 interface. The second term is the 

ray refracted from 1 to 2, reflected at the 2-3 interface, and re¬ 

fracted back into medium 1. The third term represents the ray which 

has Undergone one more reflection in the second layer and then been 

refracted back into medium 1. This series of rays is labelled A, 

B, C, D in Figure 2. 

The second term in the third brackett multiplied by the 

first two bracketts represents the effects of the set of rays dis¬ 

cussed above after they have gone through one reflection at the 

surface. Some of these rays are indicated in Figure 2. The next 

term gives the effects of this set of rays after they have gone through 

another surface reflection and so on for the succeeding terms. 

In normal mode theory the approximation is made that each 

finite sum of multiple reflections can be represented by its appropriate 

infinite sum. This approximation is now applied to expression (3). 

The reflection and refraction coefficients are given by » 
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1 > /^l"" w*. 
r'~ A+y* (5) 

K~ yty, 
(6) 

\ __ AnA 
~ A*V» 

(7) 

TT = 7^^; = \-Kl= V-K‘a 

(8) 

where y, , ^ 

V 
density of medium 1 

(^-density of medium 2 

^-density of medium 3* 

Then, the series in the parentheses of equation 3 become 

KvOTe^AV KVTTe K'VTTe^/;1... 

^ -k'+ (V- k’l) (kV-K'V) 

,V\-^ (k L'-K L )e 7 

(9) 

-kVu^1 

\-K’L e-k ^ y+KLe^A1 

And substituting (5), (6), (7), and (3) into (9), one obtains 

WKLe'"^** ” T^.+y* 
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-^1 
where ~R — - * ^_ . The third brackett is a geometric 

series in powers of so that expression (3) 

will be given by 

H 

“ 2, U l£k>CAA 

(10) 

va.A 

^ 2l, ^vs 
' "Ry$, <U=y$, rt +■ ^My4, H 

The integral representation for a spherical point source will then be 

which agrees with the expression given by pekeris^ if one realizes 

that ■R can also be expressed as 

5. Pekeris, C., loc. cit. 
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^ " V** 

In the formal solution of the integral (11) the normal modes 

occur at the poles of the integrand. The equation determining these 

poles is the dispersion equation for the phase velocity and is called 

the characteristic equation of the normal mode system. The physical 

significance of the characteristic equation for the two layered 

system has been discussed by Press and Ewing^*. The significance of 

the three layered equation is discussed here. 

The poles of the integrand occur at solutions of the 

equation. 

V* ^ H * ^/W'H = V + e 

= \ + (K +\,7TeK'L'TTe^1^'* VtT« (12) 

ov* 

- (K+ LTT^H k'IPtt 

The equation says that the normal modes occur at those places 

where the primary ray is in phase with the sum of the secondary rays which 

have not undergone another reflection from the free surface and where 

the amplitude of the sum of the secondary rays is equal to the primary. 

6, press, F., and Ewing, M., loc. cit 
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The ray pattern for the first mode as described by equation (13) 

is indicated in Figure 3. 

1 

z 

3 

Figure 3 

in the two layered case the condition was that the reflected ray be 

in phase with the primary ray, see Figure 4. 

SUY^ouCJC. 

Figure 4 

In the three layered case the effect of the partial refraction at the 

first interface must be included, (it is to be remembered that the 

expressions obtained from the integral and discussed here apply to 

the z -component of the wave. A similar discussion holds for the 

normal to the wave.) 

The higher modes occur at increasing values of cor¬ 

responding to multiples of 2TT in the phase. The ray patterns for 

these modes will be similar to Figure 3. The cut off frequency 

occurs when the sum of the amplitudes of the secondary rays does not 



29. 

equal unity, i.e., when there is partial refraction into medium 3. 

At the upper end of the spectrum a frequency is passed beyond which 

the propagation takes place solely in the first layer. This corresponds 

to critical reflection at the 1-2 interface. 

It is hoped that the method of multiple reflections used 

here for the interpretation of normal modes in the three liquid 

layer case can be utilized to obtain the characteristic equation for 

more complicated problems which, as yet, have not been solved by 

formal methods. 
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